Mapa de coberturas del suelo utilizando imágenes satelitales Sentinel-2 y Landsat-8 del municipio de Covarachía – Colombia
Land covers map using Sentinel-2 and Landsat-8 satellite images of the municipality of Covarachía - Colombia
Contenido principal del artículo
Resumen
La agricultura es uno de los campos en donde
el uso de los suelos es de importancia, ya que
tener la información adecuada permite evidenciar
la gestión de los agroecosistemas, que es de
importancia para mitigar impactos climáticos y
ambientales (Rega et al., 2020). Dada la diversidad
de aplicaciones que necesitan información
actualizada de la cobertura del suelo, es complicado
tener soluciones a la totalidad de las necesidades
a causa de la gran variedad de usuarios
(Szantoi et al., 2020). En ese orden, en este artículo
se utilizan imágenes satelitales Sentinel-2 y
Landsat-8 a las cuales se les aplican algoritmos
clasificadores supervisados y no supervisados
para generar un mapa de la cobertura del suelo
del municipio de Covarachía, Colombia.
Palabras clave
Descargas
Detalles del artículo
Referencias (VER)
Abbas, A., Minallh, N., Ahmad, N., Rehman, S., y Khan, M. (2016). K-Means and ISODATA Clustering Algorithms for Landcover Classification Using Remote Sensing. ResearchGate, 48, 315-318. https://www.researchgate.net/publication/303971825_K-Means_and_ISODATA_Clustering_Algorithms_for_Landcover_Classification_Using_Remote_Sensing
Fisterra. (2020). Medidas de concordancia: El índice Kappa. https://www.fisterra.com/formacion/metodologia-investigacion/medidas-concordancia-indice-kappa/
García, D., Camacho, M., y Paegelow, M. (2019). Sensitivity of a common Land Use Cover Change (LUCC) model to the Minimum Mapping Unit (MMU) and Minimum Mapping Width (MMW) of input maps. Computers, Environment and Urban Systems, 78, 101389. https://doi.org/10.1016/j.compenvurbsys.2019.101389
Gisadminbeers. (26 de marzo de 2017). Combinaciones RGB de imágenes satélite Landsat y Sentinel. Gis&Beers. http://www.gisandbeers.com/combinacion-de-imagenes-satelite-landsat-sentinel-rgb/
He, Y., Lee, E., y Warner, T. A. (2017). A time series of annual land use and land cover maps of China from 1982 to 2013 generated using AVHRR GIMMS NDVI3g data. Remote Sensing of Environment, 199, 201-217. https://doi.org/10.1016/j.rse.2017.07.010
Kiswanto, Tsuyuki, S., Mardiany, y Sumaryono. (2018). Completing yearly land cover maps for accurately describing annual changes of tropical landscapes. Global Ecology and Conservation, 13. https://doi.org/10.1016/j.gecco.2018.e00384
NV5 Geospatial. (2020). K-Means. https://www.harrisgeospatial.com/docs/KMeansClassification.html
Li, X., Ling, F., Foody, G., Ge, Y., Zhang, Y., y Du, Y. (2017). Generating a series of fine spatial and temporal resolution land cover maps by fusing coarse spatial resolution remotely sensed images and fine spatial resolution land cover maps. Remote Sensing of Environment, 196, 293-311. https://doi.org/10.1016/j.rse.2017.05.011
Misra, M., Kumar, D., y Shekhar, S. (2020). Assessing Machine Learning Based Supervised Classifiers For Built-Up Impervious Surface Area Extraction From Sentinel-2 Images. Urban Forestry & Urban Greening, 53. https://doi.org/10.1016/j.ufug.2020.126714
Nuestro municipio - Alcaldía Municipal de Covarachía en Boyacá. (2020). http://www.covarachia-boyaca.gov.co/municipio/nuestro-municipio
Pérez, A., Udías, F., y Rembold, F. (2020). Integrating Multiple Land Cover Maps through a Multi-Criteria Analysis to Improve Agricultural Monitoring in Africa. International Journal of Applied Earth Observation and Geoinformation, 88. https://doi.org/10.1016/j.jag.2020.102064
Rega, C., Short, C., Pérez, M., y Paracchini, M. (2020). A classification of European agricultural land using an energy-based intensity indicator and detailed crop description. Landscape and Urban Planning, 198. https://doi.org/10.1016/j.landurbplan.2020.103793
Renza, D., Martinez, E., Molina, I., y Ballesteros, D. (2017). Unsupervised change detection in a particular vegetation land cover type using spectral angle mapper. Advances in Space Research, 59(8), 2019-2031. https://doi.org/10.1016/j.asr.2017.01.027
Saah, D., Tenneson, K., Poortinga, A., Nguyen, Q., Chishtie, F., … Ganz, D. (2020). Primitives as building blocks for constructing land cover maps. International Journal of Applied Earth Observation and Geoinformation, 85. https://doi.org/10.1016/j.jag.2019.101979
Satélite Sentinel-2. Flota de satélites europeos de vigilancia medioambiental del programa Copernicus
Satélite Landsat-8. Satélite estadounidense para estudios cartográficos y de características de temperatura de la superficie
Stéphane, D., Laurence, D., Raffaele, G., Valérie, A., y Eloise, R. Land Cover Maps of Antananarivo (Capital of Madagascar) Produced by Processing Multisource Satellite Imagery and Geospatial Reference Data. Data in Brief, 31. https://doi.org/10.1016/j.dib.2020.105952
Humboldt State University. (2019). Supervised Classification. http://gsp.humboldt.edu/olm/Courses/GSP_216/lessons/Classification/supervised.html
Szantoi, Z., Geller, G., Tsendbazar, N., See, L., Griffiths, P., Fritz, S., Gong, P., Herold, M., Mora, B., y Obregón, A. (2020). Addressing the need for improved land cover map products for policy support. Environmental Science & Policy, 112, 28-35. https://doi.org/10.1016/j.envsci.2020.04.005
Vilar, L., Garrido, J., Echavarría, P., Martínez, J., y Martín, M. (2019). Comparative analysis of CORINE and climate change initiative land cover maps in Europe: Implications for wildfire occurrence estimation at regional and local scales. International Journal of Applied Earth Observation and Geoinformation, 78, 102-117. https://doi.org/10.1016/j.jag.2019.01.019