Algoritmos genéticos y su aplicación en la visualización de un mapa auto-organizado
Algoritmos genéticos y su aplicación en la visualización de un mapa auto-organizado
Main Article Content
Abstract
Genetic algorithms were proposed during the 1970’s as a great computational tool for the artificial solution of complex problems. Its design and operation are based on the ability of living beings to adapt themselves to the demands of their environment. This capacity artificially achieves that a certain problem adapts a set of solutions. This article presents an application of these algorithms, focused on visualizing the distances between cognitive neurons on a self-organized map of Kohonen. This method is a better way of interpreting their learning, in contrast to the limitations of the method known as matrix-unified distances (or U-matrix).
Keywords
Downloads
Article Details
References (SEE)
Bentley, P. y Corne, D. (Eds.). (2002). Creative Evolutionary Systems. Massachusetts: Morgan Kaufmann.
Bishop, C. (2006). Pattern Recognition and Machine Learning. Berlín: Springer.
Floreano, D. y Mattiussi, C. (2008). Bio-inspired Artificial Intelligence: Theories, Methods and Technologies. Cambridge: mit Press.
Goldberg, D. (1989). Genetic Algorithms in Search, Optimization and Machine Learning. Nueva York: Addison-Wesley.
Hart, W., Krasnogor, N. y Smith, J. (Eds.). (2005). Recent Advances in Memetic Algorithms. Berlín: Springer.
Holland, J. (1975). Adaptation in Natural and Artificial Systems. Michigan: University of Michigan Press.
Jacob, B. (1995). Composing with Genetic Algorithms. Conferencia presentada en the International Computer Music Conference, Banff, Canada.
Matić, D. (2010). A Genetic Algorithm for Composing Music. Yugoslav Journal of Operations Research, 20(1), 157-177.
Russell, S. y Norvig, P. (1995). Artificial Intelligence: A Modern Approach. Nueva Jersey: Prentice-Hall.
Sammon, J. (1969). A Nonlinear Mapping for Data Structure Analysis. IEEE. Transactions on Computers, 18(5), 401-409.