Evolución cultural en sociedades artificiales
Evolución cultural en sociedades artificiales
Main Article Content
Abstract
In this paper, the generalities of some computational models inspired by characteristics of cultural evolution are reviewed and classified into two groups, depending on whether they are based on memetics or not. It is intended to demonstrate, despite the boom they have had in applications aimed to solve optimization problems, their lack of naturalness against the possibility of simulating cultural characteristics present in natural societies. The culture is assumed as the set of ideas and behaviors developed and transmitted through the interaction between agents carrying genes and memes, since it is considered that they have genetically encoded a biological machinery with a certain mental system and that in this system are the memes capable of communicate with other similar agents. Regardless of the fact of having neurons in this system, in most of the models reviewed here there is no such genetic-cultural relationship, since in them the cultural is reduced to accelerate the genetic resolution of problems or, in the best case found, the cultural uses memes derived from genes, but as copies of their gene information.
Keywords
Downloads
Article Details
References (SEE)
Acerbi, A. y Marocco, D. (Junio del 2009). Orienting learning by exploiting sociality: An evolutio¬nary robotics simulation. Conferencia presentada en 2009 International Joint Conference on Neural Networks, Atlanta, Estados Unidos, 20-27. doi: https://doi.org/10.1109/ IJCNN.2009.5178607
Aunger, R. (2002). The Electric Meme: A New Theory of How We Think. Nueva York: Free Press.
Blackmore, S. (1999). The Meme Machine. Oxford: Oxford University Press.
Bongard, J. (2013). Evolutionary robotics. Communications of the acm, 56(8), 74-83.
Borenstein, E. y Ruppin E. (2004). Envolving imitating agents and the emergence of a neural mi¬rror system. En M. Bedau, P. Husbands, T. Ikegami, J. Pollack y R. Watson (eds.), Artificial life ix. Proceedings of the Ninth International Conference on the Simulation and Synthesis of Living Systems (pp. 146-151). Cambridge, Estados Unidos: The mit press.
Brodie, R. (2009). Virus of the Mind: The New Science of the Meme. Nueva York: Hay House.
Burke, E., Gendreau, M., Hyde, M., Kendall, G., Ochoa, G., Özcan, E. y Qu, R. (2013). Hyper-heu¬ristics: a survey of the state of the art. Journal of the Operational Research Society, 64(12), 1695- 1724. doi: https://doi.org/10.1057/jors.2013.71
Chen, X., Ong, Y., Lim, M. y Tan, K. (2011). A multi-facet survey on memetic computation. IEEE Transactions on evolutionary computation, 15(5), 591-607. doi: https://doi.org/10.1109/ TEVC.2011.2132725
Cowling, P., Kendall, G. y Soubeiga, E. (2001). A Hyperheuristic Approach to Scheduling a Sa¬les Summit. En E. Burke y W. Erben (eds.), Practice and Theory of Automated Timetabling iii. patat 2000. Lecture Notes in Computer Science (vol. 2079) (pp. 176-190), Konstanz, Germany: Springer.
Curran, D. y O’Riordan, C. (2007). The effects of cultural learning in populations of neural networks. Artificial Life, 13(1), 45-67. doi: https://doi.org/10.1162/artl.2007.13.1.45
Dawkins, R. (1976). The selfish gene. Oxford: Oxford University Press.
Dawkins, R. (1983). Universal Darwinism. En D. Bendall (ed.), Evolution from Molecules to Man
(pp. 403-425). Nueva York: Cambridge University Press.
Dawkins, R. (1986). The Blind Watchmaker: Why the Evidence of Evolution Reveals a Universe Without
Design. Nueva York y Londres: WW Norton & Company.
Dawkins, R. (1993). Viruses of the mind. En B. Dahlbom (ed.), Dennett and His Critics: Demystifying Mind (pp. 13-27). Oxford: Blackwell.
Dennett, D. (2006). Breaking the Spell: Religion as a Natural Phenomenon. Estados Unidos Penguin Books.
Doncieux, S., Bredeche, N., Mouret, J-B. y Eiben A. (2015). Evolutionary robotics: what, why,and where to. Frontiers in Robotics and ai, 2(4), 1-18. doi: https://doi.org/10.3389/frobt.2015.00004
Espingardeiro, A. (2014). A roboethics framework for the development and introduction of social assistive robots in elderly care (tesis de doctorado). Universidad de Salford, Manchester. Recuperado de https://bit.ly/2toFxNQ
Feng, L., Ong, Y., Tan, A. y Chen, X. (Junio del 2011). Towards human-like social multi agents with memetic automaton. Conferencia presentada en Congress of Evolutionary Computation (cec), Nueva Orleans, Estados Unidos, 1092-1099. doi: https://doi.org/10.1109/
CEC.2011.5949739
Ferber, J. (1999). Multi-Agent System: An Introduction to Distributed Artificial Intelligence. Boston: Addison-Wesley Longman Publishing Co.
Floreano, D., Husbands, P. y Nolfi, S. (2008). Evolutionary robotics. En B. Siciliano y O. Khatib(eds.), Springer handbook of robotics (pp. 1423-1451). Berlin: Springer.
Goldberg, D. (1989). Genetic algorithms in search, optimization, and machine learning. Boston: Addison-Wesley Longman Publishing Co.
Gong, T. (2010). Exploring the roles of horizontal, vertical, and oblique transmissions in language evolution. Adaptive Behavior, 18(3-4), 356-376.
González, S. (2004). ¿Sociedades artificiales? Una introducción a la simulación social. Revista Internacional de Sociología, 62(39), 199-222. Recuperado de https://bit.ly/2PpCa1y
Hart, W., Krasnogor, N. y Smith, J. (2005). Memetic evolutionary algorithms. En W. Hart, N. Krasnogor y J. Smith. (eds.), Recent Advances in Memetic Algorithms (pp. 3-27). Berlin; Heidelberg; New York: Springer.
Hauser, M. (2006). Moral Minds: How Nature Designed our Universal Sense of Right and Wrong.Nueva York: Harper Collins.
Heinerman, J., Rango, M. y Eiben, A. (Diciembre del 2015). Evolution, individual learning, and social learning in a swarm of real robots. Conferencia presentada en 2015 ieee Symposium Series on Computational Intelligence, Cape Town, Sur Africa, 1055-1062. doi: https://doi.org/10.1109/SSCI.2015.152
Holland, J. (1975). Adaptation in Natural and Artificial Systems. An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence. Míchigan: University of Michigan Press.
Huy, N., Soon, O., Hiot, L. y Krasnogor, N. (2009). Adaptive cellular memetic algorithms. Evolutionary Computation, 17(2), 231-256. doi: https://doi.org/10.1162/evco.2009.17.2.231
Kendall, G., Cowling, P. y Soubeiga, E. (2002). Choice function and random hyperheuristics. Conferencia presentada en 4th Asia-Pacific Conference on Simulated Evolution and Learning, Singapore, 667-671. Recuperado de https://bit.ly/2PSE9dU
Krasnogor, N., Aragón, A. y Pacheco, J. (2006). Memetic algorithms. En E. Alba y R. Martí (eds.), Metaheuristic Procedures for Training Neutral Networks (pp. 225-248). Boston: Springer. doi:https://doi.org/10.1007/0-387-33416-5
Krasnogor, N. y Gustafson, S. (2002). Toward truly “memetic” memetic algorithms: Discussion and proofs of concept. En D. Corne, G. Fogel, W. Hart, J. Knowles, N. Krasnogor, R. Roy, J. Smith y A. Tiwari (eds.), Advances in Nature-Inspired Computation: The ppsn vii Workshops, (pp. 9-10). Reading: pedal; University of Reading.
Krasnogor, N. y Gustafson, S. (2004). A study on the use of “self-generation” in memetic algorithms. Natural Computing, 3(1), 53-76. doi: https://doi.org/10.1023/B:NACO.0000023419.83147.67
Krasnogor, N. y Smith, J. (2005). A tutorial for competent memetic algorithms: models, taxonomy and design issues. ieee Trans Evol Comput, 9, 474-488.
Lamma, E., Riguzzi, F. y Pereira, L. (2003). Belief revision via lamarckian evolution. New Generation Computing, 21(3), 247-275. DOI: https://doi.org/10.1007/BF03037475
Le, M., Neri, F. y Ong, Y. (2015). Memetic algorithms. En H. Ishibuchi (ed.), Encyclopedia of Life Support Systems: Computational Intelligence (vol. 2), (pp. 57-86). Singapur: Unesco; Eolss Publishers.
Le, M., Ong, Y., Jin, Y. y Sendhoff, B. (2009). Lamarckian memetic algorithms: Local optimum and connectivity structure analysis. Memetic Computing, 1(3), 175-190. doi: https://doi.org/10.1007/s12293-009-0016-9
Lewontin, R. (1970). The Units of Selection. Annual Review of Ecology and Systematics, 1, 1-18.
Maldonado, C. y Gómez, N. (2010). Modelamiento y simulación de sistemas complejos. Bogotá: Editorial Universidad del Rosario. Recuperado de https://bit.ly/36JK4sD
Meuth, R., Lim, M., Ong, Y. y Wunsch, D. (2009). A proposition on memes and meta-memes incomputing for higher-order learning. Memetic Computing, 1(2), 85-100.
Moscato, P. (1989). On evolution, search, optimization, genetic algorithms and martial arts: Towards memetic algorithms. Pasadena, Estados Unidos: Caltech. Recuperado de https://bit.ly/38K6hsb
Nedjah, N., Coelho, L. y Mourelle, L. (Eds.). (2007). Mobile robots: The evolutionary approach - Studies in Computational Intelligence (vol. 50). Berlin: Springer.
Nguyen, Q., Ong, Y. y Lim, M. (Julio del 2008). Non-genetic transmission of memes by diffusion. Conferencia presentada en 10th annual conference on Genetic and evolutionary computation, Atlanta, Estados Unidos, 1017-1024. doi: http://doi.acm.org/10.1145/1389095.1389285
Pam, N. (13 de abril del 2013). Sociality [recurso en línea]. Recuperado de https://bit.ly/34vpt9Q
Pan, Z., Feng, L., Ong, Y., Kang, Y., Tan, A. y Miao, C. (Septiembre del 2010). Meme selection, variation, and transmission in multi-agent system. Conferencia presentada en World Automation Congress, Kobe, Japón, 1-6. Recuperado de https://bit.ly/2rXpo1j
Radetic, E., Pelikan, M. y Goldberg, D. (Julio del 2009). Effects of a deterministic hill climber on hBOA. Conferencia presentada en 11th Annual conference on Genetic and evolutionary computation, Montreal, Canadá, 437-444. doi: http://doi.acm.org/10.1145/1830483.1830543
Randsley de Moura, G. y Abrams, D. (2013). Bribery, Blackmail, and the Double Standard for Leader Transgressions. Group Dynamics: Theory, Research, and Practice, 17(1), 43-52. doi: https://doi.org/10.1037/a0031287
Reynolds, R. (1994). An introduction to cultural algorithms. En A. Sebald y L. Fogel (eds.), Proceedings of the third annual conference on evolutionary programming (pp. 131-139). River Edge, Estados Unidos: World Scientific Programming.
Reynolds, R. y Peng, B. (2005). Cultural algorithms: computational modeling of how cultures learn to solve problems: an engineering example. Cybernetics and Systems: An International Journal, 36(8), 753-771. doi: https://doi.org/10.1080/01969720500306147
Sawyer, R. (2003). Artificial Societies: Multiagent Systems and the Micro-Macro Link in Sociological Theory. Sociological Methods & research, 31(3), 325-363. doi: https://doi.org/10.1177/0049124102239079
Smith, J. (Diciembre de 2003). Co-evolving memetic algorithms: A learning approach to robust scalableoptimisation. Conferencia presentada en The 2003 Congress on Evolutionary Computation, cec ‹03, Canberra, Australia, 498-505. doi: https://doi.org/10.1109/CEC.2003.1299617
Squazzoni, F., Jager, W. y Edmonds, B. (2014). Social Simulation in the Social Sciences: A Brief Overview. Social Science Computer Review, 32(3), 279-294. doi: https://doi.org/10.1177/0894439313512975
Sutton, R. y Barto, A. (1998). Reinforcement learning: An introduction. Cambridge, Estados Unidos: mit Press.
Talbi, E. (2009). Metaheuristics: from design to implementation. Nueva Jersey: John Wiley & Sons.
Tan, A., Lu, N. y Xiao, D. (2008). Integrating temporal difference methods and self-organizing neural networks for reinforcement learning with delayed evaluative feedback. ieee Transactions on Neural Networks, 19(2), 230-244. doi: https://doi.org/10.1109/TNN.2007.905839
Ullah, A., Sarker, R., Comfort, D. y Lokan, C. (Septiembre del 2007). An agent-based memetic algorithm (ama) for solving constrained optimization problems. Conferencia presentada en 2007 ieee Congress on Evolutionary Computation, Singapur, Singapur, 999-1006. doi: https://doi.org/10.1109/CEC.2007.4424579
Veruggio, G., Solis, J. y Van der Loos, M. (2011). Roboethics: Ethics Applied to Robotics. ieee Robotics & Automation Magazine, 18(1), 21-22. doi: 10.1109/MRA.2010.940149
Wooldridge, M. (2009). An introduction to multiagent systems. Glasgow: John Wiley & Sons.
Zaikman, Y. y Marks, M. (2014). Ambivalent Sexism and the Sexual Double Standard. Sex Roles, 71(9-10), 333-344.